Chapter 11

Other Methods
for Calculating
Band Structure
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THE AUGMENTED PLANE-WAVE METHOD (APW)

This approach, due to J. C. Slater,’* represents y,(r) as a superposition of a finite
number of plane waves in the flat interstitial region, while forcing it to have a more
rapid oscillatory atomic behavior 1n the core region. This is achieved by expanding
V. in a set of augmented plane waves.'> The APW ¢, , is defined as follows:

1. ¢y, = €*'" in the interstitial region. It is important to note that there is no
constraint relating & and k (such as, for example, & = h%k?/2m). One can define

an APW for any energy & and any wave vector k. Thus@ny single APW>loes

not satisfy thchrddinger equation for energy & in the interstitial region.
¢y 1s continuous at the boundary between atomic and interstitial regions.

3. Inthe atomic region about R, ¢, , does satisfy thechri')dinger equation:

hz
- %szbk,s(l’) + V(r — Ry = €¢yer),  |r — R <ro. (11.15)

Since k does not appear in this equation, ¢, , gets its k dependence only via the
boundary condition (2) and the k dependence determined by (1) in the interstitial
region.



It can be shown that these conditions determine a unique APW ¢, for all k
and &. Note that in the interstitial region the APW satisfies not (11.15) but H¢, . =
(h*k?/2m)¢, .. Note also that, in general, ¢, will have a discontinuous derivative on
the boundary between interstitial and atomic regions, so that V*¢, . will have delta-
function singularities there.

The APW method tries to approximate the correct solution to the crystal
Schrodinger equation (11.1) by a superposition of APW'’s, all with the same energy.
For any reciprocal lattice vector K the APW ¢, ¢, satisfies the Bloch condition
with wave vector k (Problem 2), and therefore the expansion of Y, (r) will be of the
form

Y(r) = Z Cx¢k+x,s(k)(r)a (11.16)

K

where the sum is over reciprocal lattice vectors.

By taking the energy of the APW to be the actual energy of the Bloch level, we
guarantee that i, (r) satisfies the crystal Schrodinger equation in the atomic regions.
The hope is that not too many augmented plane waves will suffice to approximate
the solutions to the full Schrédinger equation in the interstitial region'® and at the
boundary. In practice, as many as a hundred APW’s can be used; by the time this
stage is reached, &(k) does not change appreciably when more APW’s are added, and
one feels with some confidence that good convergence has been achieved.




Because each APW has a discontinuous derivative at the boundary of the atomic
and interstitial regions, it is best to work not with the Schrodinger equation but with
an equivalent variational principle:

Given any differentiable (but not necessarily twice differentiable)!” function ¥ (r),
define the energy functional:

J(;l—mlvw(rﬂ2 + U(r)|n//(r)|2> dr
E[y] = :
fl!ﬁ(r)l2 dr

It can be shown'® that a solution to the Schrdodinger equation (11.1) satisfying the
Bloch condition with wave vector k and energy &(k) makes (11.17) stationary with
respect to differentiable functions /(r) that satisfy the Bloch condition with wave
vector k. The value of E[, ] is just the energy &(k) of the level y,.

(11.17)

The variational principle is exploited by using the APW expansion (11.16) to
calculate E[y, ]. This leads to an approximation to &(k) = E[y, ] that depends on
the coefficients cx. The demand that E[y, ] be stationary leads to the conditions
0E/dck = 0, which are a set of homogeneous equations in the cg. The coefficients

in this set of equations depend on the sought for energy &(k), both through the §(k)
dependence of the APW’s and because the value of E[, | at the stationary point
is &(k). Setting the determinant of these coefficients equal to zero gives an equation
whose roots determine the &(k).




As in the cellular case, it is often preferable to work with a set of APW’s of definite
energy and search for the k at which the secular determinant vanishes, thereby
mapping out the constant energy surfaces in k-space. With modern computing
techniques it appears possible to include enough augmented plane waves to achieve
excellent convergence,!® and the APW method is one of the more successful schemes
for calculating band structure.?°

In Figure 11.7 we show portions of the energy bands for a few metallic elements,
as calculated by L. F. Mattheiss using the APW method. One of the interesting results
of this analysis is the extent to which the bands in zinc, which has a filled atomic
d-shell, resemble the free electron bands. A comparison of Mattheiss’ curves for

titanium with the cellular calculations by Altmann (Figure 11.8) should, however,
instill a healthy sense of caution: Although there are recognizable similarities, there
are quite noticeable differences. These are probably due more to the differences in
choice of potential than to the validity of the calculation methods, but they serve to
indicate that one should be wary in using the results of first principles band-structure

calculations.
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Figure 11.7
APW energy bands for iron, copper, and zinc, calculated by I.. F.
Mattheis, Phys. Rev. 134, A970 (1964). The bands are plotted from the
origin of k-space to the points indicated on the zone surfaces. Note the
striking resemblance between the calculated bands of zinc and the free
electron bands (pictured to the right). Zinc has two s-electrons outside
of a closed-shell configuration. The horizontal dashed lines mark the

Fermi energy.
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Three calculated band structures for titanium. Curves (a) and (b) were calculated by the cellular
method for two possible potentials. They are taken from S. L. Altmann, in Soft X-Ray Band
Spectra, D. Fabian (ed.), Academic Press—London, 1968. Curve (c) is from the APW calculation

of Matthelis.



THE ORTHOGONALIZED PLANE-WAVE METHOD (OPW)

An alternative method of combining rapid oscillations in the ion core region with
plane-wavelike behavior interstitially, is the method of orthogonalized plane waves,
due to Herring.>> The OPW method does not require a muffin-tin potential to make

calculations feasible, and is therefore of particular value if one insists on using an
undoctored potential. In addition, the method affords some insight into why the
nearly free electron approximation does so remarkably well in predicting the band
structures of a variety of metals.

We begin by explicitly distinguishing between the core electrons and the valence
electrons. The core wave functions are well localized about the lattice sites. The
valence electrons, on the other hand, can be found with appreciable probability in
the interstitial regions, where our hope is that their wave functions will be well
approximated be a very small number of plane waves. Throughout this and the next
section we shall affix superscripts ¢ or v to wave functions to indicate whether they
describe core or valence levels.




The difficulty with approximating a|valence wave function [by a few plane waves
everywhere 1n space (as in the nearly iree electron method) is that this hopelessly
fails to produce the rapid oscillatory behavior required in the core region. Herring
noted that this could be taken care of by using not simple plane waves, but plane

waves orthogonalized to the core levels right from the start. Thus we define the
orthogonalized plane wave (OPW) ¢, by:

G = ¥ + ) b f(x), (11.24)

where the sum is over all core levels with Bloch wave vector k. The core wave functions
are assumed to be known (generally they are taken to be tight-binding combinations
of calculated atomic levels), and the constants b, are determined by requiring that
¢, be orthogonal to every core level:*°

j dr Y ¥ (r)dy(r) = 0, (11.25)

which implies that
b, = — J dr Yi¥(r)e™ ™. (11.26)



The OPW ¢, has the following properties characteristic of valence level wave
functions:

1. By explicit construction it is orthogonal to all the core levels. It therefore also
has the required rapid oscillations in the core region. This is particularly evident
from (11.24), since the core wave functions ¥,“(r) appearing in ¢, themselves
oscillate in the core region.

2. Because the core levels are localized about lattice points, the second term in
(11.24) is small in the interstitial region, where ¢, is very close to the single plane
wave e* ",

Since the plane wave ¢* " and the core wave functions y,(r) satisfy the Bloch

condition with wave vector k, so will the OPW ¢,. We may therefore, as in the APW
method, seek an expansion of the actual electronic eigenstates of the Schrodinger
equation as linear combinations of OPW’s:

Ui = 2, CkPrsk- (11.27)

K




As in the APW method, we can determine the coefficients ¢i in (11.27) and the energies
&(k) by inserting (11.27) into the variational principle (11.17), and requiring that the
derivatives of the resulting expression with respect to all the ¢,’s vanish. The crystal
potential U(r) will enter into the resulting secular problem only through its OPW
matrix elements:

J G x@UX) Py (r) dr (11.28)

The OPW method owes its success to the fact that although the plane-wave
matrix elements of U are large, its OPW matrix elements turn out to be much smaller.

Therefore, although it is hopeless to try to get convergence by expanding v, in plane
waves, the convergence of the expansion in OPW’s is very much faster.



THE PSEUDOPOTENTIAL

The theory of the pseudopotential began as an extension of the OPW method. Aside
from the possibility it offers of refining OPW calculations, it also provides at least a
partial explanation for the success of nearly free electron calculations in fitting actual
band structures.

We describe the pseudopotential method only in its earliest formulation,?® which
is basically a recasting of the OPW approach. Suppose that we write the exact wave
function for a valence level as a linear combination of OPW’s, as in (11.27). Let
¢,’ be the plane-wave part of this expansion:

Pseudo-potential function | ¢«(r) = ;Cxei""LK"'- (11.29)

Then we can rewrite the expansions (11.27) and (11.24) as

Vi) = ¢ "(r) — ) < J dr’ l//fi"(r')</>k"(r')) V(). (11.30)

1t satisfies Schrodinger’s equation with

Since ¥, is an exact yalence wave functig

eigenvalue &,":
' = & (11.31)

Substitution of (11.30) into (11731) gives \\
Ho' — ). (Jdr' lﬁﬁ*fb.ﬁ) Hy, =8, ( <Jdr Uik dy > W)- (11.32)



If we note that Hy,* = &, for the exact core levels, then we can rewrite (11.32) as

(H + V)¢ = &, (11.33)

where we have buried some rather cumbersome terms in the operator VX, which is
defined by

VR = S — 0 ( | dr vty (11.34)
We have therefore arrived at an effective Schrodinger equation (11.33) satisfied by

’, the smooth part of the Bloch function. Since experience with the OPW method
suggests that ¢, can be approximated by a linear combination of a small number
of plane waves, we might expect that the nearly free electron theory of Chapter 9
could be applied to finding the valence levels of H + V. This is the starting point
for pseudopotential calculation and analysis.




The pseudopotential is defined to be the sum of the actual periodic potential U,
and V&: '
2

Vpseudo =U + VR H + VR — _2ﬁn7 V2 i J/ pseudo. (11.35)

The hope is that the pseudopotential is sufficiently small to justify a nearly free electron
calculation of the valence levels. One can see a hint that this might be so from the
fact that although the actual periodic potential is attractive near the ion cores, and
thus (Y, Uy) = [ dr y*(r)U(r)Y(r) is negative, the corresponding matrix element of

2

the potential V¥ is, according to (11.349),
f dr lc(*'// (11.36)

Since the valence energies lie above the core energies, this is always positive. Thus

adding V® to U provides at least a partial cancellation, and one might optimistically

hope for it to lead to a potential weak enough to do nearly free electron calculations
for ¢’ (the so-called pseudo wave function), treating the pseudopotential as a weak

perturbation.

W, VEY) = X (8 — &)




There are some peculiar features to the pseudopotential. Equation (11.34) implies
that V® (and hence the pseudopotential) is nonlocal; i.e., its effect on a wave function
Y (r) is not merely to multiply it by some function of r. In addition, the pseudopotential
depends on the energy of the level being sought, &,°, which means that many of the
basic theorems one is used to applying without further thought (such as the orthog-
onality of eigenfunctions belonging to different eigenvalues) are no longer applicable
to Hpscudo.

The second difficulty can be removed by setting &' in (11.34) and in V™*"*°equal
to the energy of the levels one is most interested in—generally the Fermi energy. Of
course, once this replacement has been made, the eigenvalues of H + VX are no
longer exactly those of the original Hamiltonian, except for the levels at the Fermi
energy. Since these are frequently the levels of greatest interest, this need not be too
great a price to pay. For example, one can, in this way, find the set of k for which
&’ = &, thereby mapping out the Fermi surface.

There turn out to be many ways other than (11.34) to define a V® such that
H + VR has the same valence eigenvalues as the actual crystal Hamiltonian H.

From such choices has arisen a wealth of pseudopotential lore, whose usefulness
for anything other than justifying the nearly free electron Fermi surfaces has yet
to be convincingly established.?®
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Figure 22a Pseudopotential for metallic sodium, based on the empty core model and screened by
the Thomas-Fermi dielectric function. The calculations were made for an empty core radius R, =
1.66a,, where a, is the Bohr radius, and for a screening parameter k,a, = 0.79. The dashed curve
shows the assumed unscreened potential, as from (21). The dotted curve is the actual potential of

the ion core; other values of U(r) are —50.4, —11.6, and —4.6, for r = 0.15, 0.4, and 0.7, respec-
tively. Thus the actual potential of the ion (chosen to fit the energy levels of the free atom) is very
much larger than the pseudopotential, over 200 times larger at r = 0.15.










THE GREEN’S FUNCTION METHOD OF KORRINGA, KOHN, AND
ROSTOKER (KKR)

An alternative approach to the muffin-tin potential is provided by a method due to
Korringa and to Kohn and Rostoker.?! This starts from the integral form of the
Schrédinger equation??

Yy (r) = Jdr’ Ge,(k)(r — r)UI ), (r'), (11.18)

where the integral is over all space and

'm eiKlr—r'l
A% dar —r'|’
K = \/2mé&/h?, &> 0,

= i 2m(— &)k, & <O. (11.19)

Substituting the form (11.14) for the muffin-tin potential into (11.18), and making

the change of variablesr” = r' — R in each term of the resulting sum, we can rewrite
(11.18) as

Ge(r —r') = —

Y (r) = Z Jdr” Gear — 7 — R)V(r" )Y (r” + R). (11.20)



The Bloch condition gives Y, (r” + R) = * ®y,(r"), and we can therefore rewrite
(11.20) (replacing r” by r'):

Valr) = fdr’ Sksa(® — TV )Y(r), (11.21)

where

Got — ) = Y Gyr — ¥ — R)e*'®. (11.22)
R

Equation (11.21) has the pleasing feature that all of the dependence on both wave
vector k and crystal structure is contained in the function G, ;, which can be calculated,
once and for all, for a variety of crystal structures for specified values of & and k.??
It is shown in Problem 3 that Eq. (11.21) implies that on the sphere of radius r,
the values of , are constrained to satisfy the following integral equation:

0= J'dQ’ [Sk,g(k)(rof?d), r09,¢,) % ll’(re,d)’) ~

"o

0
— ¥(ro0'¢") o Siae(robp, 19'¢) :| (11.23)
r=r0



Since the function , is continuous, it retains the form determined by the atomic
problem (Egs. (11.9) to (11.11)) at r,. The approximation of the KKR method (which
is exact for the muffin-tin potential up to this point) i; to assume that i, will be given
to a reasonable degree of accuracy by keeping only a iinite number (say N) of spherical
harmonics in the expansion (11.11). By placing this truncated expansion in (11.23),
multiplying by Y,,,(0, ¢), and integrating the result over the solid angle df d¢ for all
I and m appearing in the truncated expansion, we obtain a set of N linear equations
for the A,, appearing in the expansion (11.11). The coefficients in these equations
depend on &(k) and k through g, 4, and through the radial wave function y,, and
its derivative y; .. Setting the N x N determinant of the coefficients equal to zero
once again gives an equation determining the relation between & and k. As in the
methods described earlier, one can either search for values of & giving a solution for
fixed k, or fix & and map out the surface in k-space at which the determinant vanishes,
which will then give the constant-energy surface §(k) = &.



Both the KKR and APW methods can be regarded as techniques which, if carried
out exactly for the muffin-tin potential, would lead to infinite-order determinantal
conditions. These are then approximated by taking only a finite subdeterminant. In
the APW method the truncation is in K; the wave function is approximated in the
interstitial region. In KKR, on the other hand, the sum over all K is effectively per-
formed when g, is computed.>* Instead, the approximation is in the form of the
wave function in the atomic region. In both cases the procedure converges well if
sufficiently many terms are retained; in practice the KKR method appears to require
fewer terms in the spherical harmonic expansion than the APW technique requires
in the K expansion. When the APW and KKR methods are applied to the same
muffin-tin potential, they give results in substantial agreement.

The results of a KKR calculation for the 3s* and 3p! derived bands of aluminum

are displaved in Figure 11.9. Note the extraordinarv resemblance of the calculated
bands to the free electron levels, plotted as dashed lines in the same figure. The only

discernible effects of the interaction between electrons and ions are, as predicted by
nearly free electron theory, to split the band degeneracies. This is a striking illustration

of our observation (see page 152) that metals whose atomic configuration consists
of a small number of s and p electrons outside of a rare-gas configuration have band
structures that can be reproduced very well by the nearly free electron bands. The
next two methods to be discussed attempt to shed some light on this remarkable fact.




Figure 11.9 1.2F

Calculated valence bands for - N\ /
aluminum (three electrons 1.0 \ \
outside of a closed-shell neon Fermi level

configuration)comparedwith go i
free electron bands (dashed = p
lines). The bands are com- 2
puted by the KKR method. “ 4
(B. Segall, Phys. Rev. 124,

1797 (1961).) 2




On the other hand, one frequently encounters “calculations” of band structure
that appear to be nothing but the nearly free electron theory of Chapter 9, in which
the Fourier components Uy of the potential are treated as adjustable parameters
rather than known quantities. The Uy are determined by fitting the nearly free electron
bands either to empirical data or to the bands calculated in detail by one of the more
realistic methods. As an example of this, the KKR bands for aluminum, shown in
Figure 11.9, can be reproduced with remarkable precision throughout the zone by
a nearly free electron calculation that uses only four plane waves and requires only

two parameters®’: Uy and U,go.

Since nearly free electron theory surely cannot work so well, it must be that the
apparently nearly free electron secular problem is actually the final stage of a much
more complicated analysis, such as that of the OPW method, the Fourier components
Ug being OPW rather than plane-wave matrix elements of the potential. One there-
fore refers to such a calculation as an OPW calculation. In this context, however,
such a designation is little more than a reminder that although the analysis is formally
identical to nearly free electron theory, it can be placed on a more secure theoretical

footing.

It 1s not at all clear, however, that the OPW approach is the best way to reduce
the actual problem of an electron in a periodic potential to an effectively “nearly
free” electron calculation. A more systematic way of studying this problem, as well
as a variety of additional calculational approaches, is offered by the pseudopotential
methods.



